March 2018
Principal Evaluation Models
Alanna Bjorklund-Young
Senior Research and Policy Analyst

There is virtually no research on the validity of entire principal evaluation systems. However, research does provide evidence about two of the main components of principal observation systems: (a) principal effectiveness estimates derived from student-data and (b) principal effectiveness estimates derived from observations of principals. Within the first, estimates of principal effectiveness vary with each model’s assumptions. With respect to the second, research on principal observations indicates that some instructional leadership and organizational practices are associated with increased student learning. This memo provides recommendations on which components to include in a principal observation system, although the weight of these components should depend on the strength of data available.

Connecting principal evaluations to student data

There is relatively little research about how to evaluate principals using student data, and that which does exist indicates how complicated the process is (i.e. more complicated than estimating teacher effectiveness). Several researched models fall in this category, and their underlying assumptions have important implications for the resulting principal effectiveness estimates.

Estimates of principal effectiveness based on student data are, in some ways, similar to teacher quality value-added estimates and face some of the same criticisms and shortcomings. For instance, both rely on test scores as the primary measure of student learning (and therefore the quality of the test and its psychometric properties matter). There is an additional concern that both estimates will be biased by un-observable sorting (that is, certain kinds of principals might be matched to certain kinds of schools).

Principal effectiveness estimates face additional complications above and beyond teacher effectiveness estimate: To what extent does the principal control students’ learning environments? When should/do principals’ actions translate into student learning gains? How should the model take into account that students who remain in the same school

1 An early version of this memo was developed in partnership with Chiefs for Change. The Institute would like to thank Chiefs for Change for permission to use this material.
2 Especially in contrast to the extensive literature, that investigates how to estimate teacher quality using on student data.
have repeated exposure to the same principal? Another empirical challenge is that there are fewer principals (compared to teachers) within a school district, which renders comparisons between principals difficult.3

Given these challenges, it is unsurprising that researchers have developed multiple models for estimating principal effectiveness based on student data.4 Below are three. Each makes different assumptions about the challenges highlighted above:

1. **Model 1: School Effectiveness (Principal “Value-Added” Model).** This model assumes that the effect of a principal on student achievement is immediate and constant over time, and that principals have control over all in-school factors that affect student learning. This model is analogous to a teacher value-added model—where any growth in student learning that is different from what would be predicted (based on similar students in similar learning situations) is attributed to the principal.

 This model is attractive in its relative simplicity: it only requires data from the current and previous school years. However, it is relatively unrealistic; there are many aspects of school effectiveness that are not attributable to the principal. For example, any decisions still in place and made before the appointment of a new principal, such as curricular decisions, hiring teachers, prior teacher training. The effectiveness of these decisions (either positive or negative), at least in the short run, are likely not attributable to the principal.

2. **Model 2: Relative (Within-School) Effectiveness.** This model assumes that the effect of a principal on student achievement is immediate and constant over time. In contrast to the model above, this model estimates principal effectiveness by comparing average student learning at a given school under different principals.

 This model is more realistic than the previous model in that it recognizes that there are likely school factors that influence school effectiveness outside of the principal’s control. However, because this method relies on comparing different principals at the same school over time, there are therefore very small comparison sets that affect the estimated principal effectiveness. As but one example, if the

4 For a full description of the models see: Grissom, Kalogrides, and Loeb, “Using Student Test Scores to Measure Principal Performance”; Loeb and Grissom, “What Do We Know about the Use of Value-Added Measures for Principal Evaluation?” Note that Grissom, Kalogrides, and Loeb provides the exact specification(s) for each model.
comparison principal was very ineffective, an average principal will look effective. On the other hand, if the comparison principal was very effective, an average principal looks ineffective in comparison. In addition, some schools might be more likely to have good (or poor) principals consistently (and therefore this model would under-estimate variation in principal effectiveness). This method also requires multiple years of student-level data at each school (and the longer the time period, the better).

3. **Model 3: School Improvement (i.e. Effectiveness Over Time).** This model assumes that the impact of a principal on the school changes over time. The model, therefore, compares changes in average student achievement across the principal’s tenure.

This model is appealing because there are likely many decisions that a principal makes that build over time, such as hiring decisions, professional development, and changes to the school environment. However, the model requires multiple years of data and therefore cannot estimate the effect of a new principal. Further, student-learning gains are inherently measured with error, and differencing these student achievement measures to estimate principal effectiveness increases the error.\(^5\)

In addition to the theoretical considerations above, there are clearly practical concerns of data requirements. For example, both models 2 and 3 require a change in leadership at a school in order to estimate principal effectiveness. Therefore, it might not be possible to estimate a principal effectiveness rating for every principal, every year.

If all three models produced similar principal effectiveness estimates, then the different assumptions and data requirements of the models would be less important. However, research shows that there are important differences between the principal quality estimates produced by the three different models.

For example, one empirical study,\(^6\) using data on 523 principals from Miami-Dade County Public Schools from 2003/2004 to 2010/2011, measured principal effectiveness using the three models defined above and test scores from math and reading. The study found important differences between the models:

- The models produced different estimated standard deviations of principal effectiveness, ranging from 0.05 to 0.22 s.d. in math and 0.03 to 0.15 s.d. in

\(^6\) Grissom, Kalogrides, and Loeb, “Using Student Test Scores to Measure Principal Performance.”
reading. This is important, because an estimate’s standard deviation gives an average estimate of how much test scores would improve if the quality of the principal improved; small variation means that even changing principal quality by a lot would have little effect on student test scores, on average.

- A principal’s estimated effectiveness from one model is not always positively and significantly correlated with their estimated effectiveness from a different model. For example, correlations of estimates range from an insignificant -0.16 to a significant 0.6.

- The researchers also estimated which percentage of principals in the top 25% in one model would be reclassified in the bottom 25% in a different model. They found, for example, that 26-29% of top performers from model 1 and 24-30% of top performers from model 2 would be reclassified as bottom performers in model 3. In contrast, 9-11% of top performers in model 1 would be reclassified as bottom performers in model 2 (which is smaller, but still of substantive importance).

- Researchers compared other measures of principal effectiveness—including school accountability grades, average principal evaluation ratings, student school climate surveys, staff school climate surveys, parent school climate surveys, assistant principal rating of principals’ task effectiveness, and principal rating of their own task effectiveness—to the estimated principal effectiveness from student data. These estimates show that principal effectiveness measures from model 1 have the strongest relationship to other principal effectiveness measures, although there is a positive and significant relationship between some of the alternative measures and principal effectiveness estimates from model 2. However, the estimated relationship between alternative principal effectiveness measures and principal effectiveness from model 3 are insignificant and negative across every measure.

These researchers do not draw any clear recommendations about which model is best for measuring principal effectiveness. However, this research does suggest that model 1, while a clear over-simplification, is a better model of principal effectiveness if one believes that other measures of principal effectiveness (i.e. non-test measures) are credible.7 The researchers warn, however, that the significant positive relationship between measures might be, in part, due to test mismeasurement. This would be a problem if, for example, there is an error in student test scores and test scores are used as

7 One could also argue that model 3, which has some intuitive appeal, captures a very different dimension of principal quality than the other non-test measures and is a better measure for this reason.
part of the other measure (e.g. if parents also use test scores as a basis for their answers on the school climate survey or if the state uses test score for their school accountability grades).

However, other researchers⁸ argue that model 2 provides the most accurate estimate of principals’ persistent effects, because it is able to disentangle principals’ true contributions to student learning from other factors (instead of just assuming that the principal influences all aspects of student learning, as model 1 does). This research notes, however, that while the estimates from model 2 may be of great interest to policymakers, it might not be useful as a real-world principal evaluation system - since the model requires a change in principal. The researchers additionally warn school systems against using estimates from model 1 as a proxy for model 2. When principal effectiveness estimates from models 1 and 2 are estimated over different periods of time,⁹ the researchers find no statistically significant relationship between the estimates from the two different models.

Which model should states choose to incorporate student data into their principal evaluations?

Model 2 most credibly measures a principal’s contribution to students’ learning, and we therefore recommend this model as the preferred model, especially in school districts where principal turnover is high. However, if principal turnover is low and/or data are not available, then model 1 is the only other viable option. Note, for example, that in our review of current principal evaluation systems, below, states and districts use model 1 to estimate principal effectiveness using student test scores. However, if data limitations do not allow for the use of model 2, we recommend that states adjust the model by including school value-added estimates from the year before the current principal joined the school. This provides a more accurate view of the current principal’s contribution to student learning, by comparing the current principal’s value-added to a baseline established by his or her predecessor and has the benefit of less restrictive data requirements.¹⁰

⁹ The authors argue that the comparison across different time periods is important because it provides a comparison to persistent principal effectiveness and ensures that any sampling errors from the same time period (for example an especially strong cohort of students) do not create a spurious relationship between the estimates.
Characteristics of high-quality principals

Principal observations have also been a key component in principal evaluation systems. The key, from a data-driven perspective, is to focus observations on leadership practices that research shows are least predictive of increased student learning.

A meta-analysis\(^{11}\) that examines the relationship between principal leadership qualities and student outcomes found that the relationship between instructional leadership\(^{12}\) qualities and student achievement gains were 3-4 times larger than the relationship between student achievement and transformational leadership practices.\(^{13}\) Specifically, instructional leadership, which is characterized by a focus on teaching and learning, providing strong instructional resources for teachers, and more active participation and leadership of teacher learning and development, had an estimated effect of 0.42 s.d., compared with transformational leadership skills, which are characterized by inspiring staff, estimated effect of 0.11 s.d. However, these results should be interpreted with caution, as student outcome measures varied across different studies—studies that looked at transformational qualities tended to use social outcomes, while research about instructional leaders tended to use academic student outcome measures.

The meta-analysis further analyzed more specific leadership skills and identified five leadership dimensions that were significantly associated with student outcomes across 12 different studies. Specifically, the researchers found that: (1) establishing goals and expectations had an average effect size of 0.42 s.d. on student outcomes; (2) resourcing strategically (i.e. securing resources that are aligned to instructional purposes) had an average effect size of 0.31 s.d.; (3) planning coordinating, and evaluating teaching and curriculum had an average effect size of 0.42 s.d.; (4) promoting and participating in teacher learning and development had an average effect size of 0.84 s.d.; and (5) ensuring an orderly and supportive environment had an average effect size of 0.27 s.d.. These results, especially the magnitude of the effects, should be interpreted with caution, as student outcomes varied across studies. Further, all results from this meta-analysis should be interpreted as correlations, not causal estimates.

\(^{12}\) Instructional leadership theory has empirical origins from the 1970’s and 1980’s in poor urban schools with impressive student success. These schools were characterized by strong instructional leadership, including a disruption-free learning environment, clear teaching objectives, and high teacher expectations of their students. For more information, see: Robinson, Lloyd, and Rowe.

\(^{13}\) According to the meta-analysis, the roots of transformational leadership theory come from James McGregor Burn’s 1978 publication in which he noted that some leaders, across a variety of different kinds or organizations, are able to “engage with staff in ways that inspired them to new levels of energy, commitment, and moral purpose.” For more information, see: Robinson, Lloyd, and Rowe.
Instructional Leadership Practices. Research provides additional evidence about which instructional leadership practices are associated with increased student learning. One empirical study examined the relationship between principals’ leadership behaviors and student achievement gains using full-day observations from roughly 100 urban principals over 3 years. The study found that only some, but not all, instructional leadership practices matter for student achievement.

- A principal’s time spent generally on instructional functions is not significantly predictive of student achievement gains.
- However, a principal’s time spent on specific instructional leadership behaviors—including the principals’ time on coaching and evaluating teachers and developing the schools’ educational program—is predictive of increased student achievement scores. For example, an additional percentage of a principal’s time spent coaching or evaluating teachers was associated with a 1% and 0.22% of a standard deviation increase students’ mathematics test scores, respectively.\(^{15}\)
- Further, time spent on some practices—informal classroom walkthroughs—is negatively associated with student achievement gains, especially in high schools.

Organizational Management. There is some evidence that a principal’s organizational management also matters for student achievement. One study combined survey responses from principals, assistant principals, teachers, and parents with student-level data from Miami-Dade County Public Schools to study which principal skills are most strongly related to school quality measures. The researchers found that while the surveys distinguished five principal skills—instruction management, internal relations, organization management, administration, and external relations—only the principal’s organizational management skills consistently predicted growth in both student achievement and other school-level measures. Organizational management is a composite measure that includes survey questions about the progress towards schools’ medium- and long-term goals, including maintenance of school facilities, managing school budgets and resources, and developing a safe school environment. The estimated relationship between organizational management and student achievement is

\(^{15}\) Note that while these estimated effects appear very modest, these are average learning changes for all students in the school and 1% of a principal’s time is also a very modest increase in time.

0.015 in math and 0.012 in reading,17 and has an estimated effect of 0.08 on school accountability grades.

- **Community Leadership.** A recent study18 evaluating Pennsylvania’s principal evaluation system found a small, but statistically significant, relationship between student math scores19 and principals’ observation scores in the domains of systems leadership and professional and community leadership. Pennsylvania defines “systems leadership” as ensuring “that there are processes and systems in place for budgeting, staffing, problem solving, communicating expectations and scheduling that result in organizing the work routines in the building,”20 and “community leadership” as promoting “the success of all students, the positive interactions among building stakeholders and the professional growth of staff by acting with integrity, fairness, and in an ethical manner.” The study found that principals whose estimated contribution to math achievement was one standard deviation above average, had scores on systems leadership and professional and community leadership that were 0.17 s.d. above average. The researchers note that this relationship was especially strong among principals who had lead their schools for at least 3 years.

\begin{boxedminipage}{\textwidth}

Which components should principal observations contain?

While research cannot yet identify the actions of the most effective principals, it does provide evidence that some principal actions are more predictive of increased student learning that others. Specifically, principal instructional leadership skills (especially instructional coaching, evaluation, and developing the schools’ educational program), principal organizational management skills (or “systems leadership”), and professional & community leadership are all positively and significantly associated with increased student learning. Therefore, a principal observation system should contain these components.

\end{boxedminipage}

17 For context, the estimated relationship between a math score and being eligible for free-and-reduced lunch is -0.033 in math and -0.044 in reading.

18 McCullough et al., “Do Principals’ Professional Practice Ratings Reflect Their Contributions to Student Achievement?”

19 The research finds a positive, but not statistically significant, relationship between these two principal domains and other student learning outcomes.

20 Note the similarity between this definition and the definition of organizational management.
Summary and Examples

We cannot as yet recommend how much relative weight to place on these components within a principal evaluation system. This should vary depending on the strength of data available and other practical considerations. However, the evaluation systems below provide examples of how other states and districts have balanced different sources of information within their principal evaluation systems.

Which measures do states and districts actually incorporate into their principal evaluation systems? The table below provides an overview of different principal evaluation models currently in use. More detail about each model can be found in the appendix. Note that, as stated above, principal evaluation systems use model 1, the principal “value-added” model, when estimating the principal’s effect on student test scores.

21 For example, we recommend model 2 if sufficient high-quality data is available. If this is the case, then we would recommend that more weight is placed on this component.
<table>
<thead>
<tr>
<th>State/District</th>
<th>Model Components</th>
<th>Observation</th>
<th>Student Data</th>
<th>Other/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio Department of Education</td>
<td>Half Rubric Results of Leadership Observation Half Student Growth Data</td>
<td>5 Performance on Standards Components Graded on a rubric scale after gathering evidence</td>
<td>Combination of 2 or More: Value-Added State Assessment, Other Approved Assessments, Local Growth Goals</td>
<td>Uniquely detailed guide of evaluating the observation standards</td>
</tr>
<tr>
<td>Louisiana Department of Education</td>
<td>Half Rubric Results of Leadership Observation Half Student Growth Data</td>
<td>3 Domains with individual components graded on a rubric scale</td>
<td>35% Value-Added with test score data and student background data 15% Student Learning Targets</td>
<td>Recommended as exemplary by New Leaders</td>
</tr>
<tr>
<td>Maryland State Public Schools</td>
<td>Separate State & Local Evaluations Both 50% Professional Practice and Student Growth</td>
<td>State: 12 Outcomes each given a 2-10% allocation Local: 8+ Outcomes incorporating local priorities</td>
<td>State: Student Learning Objective Measures Local: Mix of SLO and Local Education Agency Measures for local-specific goals</td>
<td>One of few states to differentiate state- and local-measures</td>
</tr>
<tr>
<td>Delaware Department of Education</td>
<td>5 Equal Components No Exemplary Score without student improvement benchmark</td>
<td>First four components are leadership qualities graded on a rubric</td>
<td>Fifth Component: Optional Mix of Part A and B: Value-added state assessments and state recommended growth measures</td>
<td>One of few examples of the unique, balanced “data trump” evaluation model</td>
</tr>
<tr>
<td>Hillsborough Country Public Schools</td>
<td>45% Observation 40% Performance 15% School Operations</td>
<td>Identical 5-element rubric evaluations by teachers (20%) and district-evaluators (25%)</td>
<td>30% Value added with all students’ test-score data taken into account 10% Value added: Level 1 and 2 students, Reading and Math only</td>
<td>Final 15%: School Operations points for different aspects of job 360 Model (District- and teacher-level evaluation)</td>
</tr>
<tr>
<td>Georgia's Gwinnett County Public Schools</td>
<td>70% Student Achievement 12% Initiatives 8% Customer Satisfaction 10% School Management</td>
<td>Very small percentages (2 or 4) of evaluated initiatives to improve achievement, parent and staff perception and school management</td>
<td>Local, State, and National Measures of Student Achievements: A wide variety of differently scaled assessments, race-specific gains, and graduation rates</td>
<td>Part of the Walton Foundation Principal Pipeline Two decades of implementation and success</td>
</tr>
</tbody>
</table>
Appendix

Ohio Department of Education

- **Performance on Standards**: Combination of Continuous Improvement, Instruction, School Operations: Resources and Learning Environment, Collaboration, Parent and Community Engagement
 - Detailed rubric of performance on standards scoring included as well as examples of evidence of principal performance
 - Performance on Standards are judged by state evaluators
- **Student Growth Measure**: At least two of Principal Value-Added Composite (SAS EVAAC Model), Average of Teacher Vendor Assessments, and/or Locally Determined Measures
 - EVAAS Value-Added score takes into account Ohio Achievement Assessments (OAA)
 - Approved Vendor Assessments: Value-Added scores instead using an approved combination of alternative assessments that meet the student growth requirements
 - Locally-Determined Measures: Using the same assessments of the previous two, meeting student learning objectives set for locally-determined targets
- Ohio model includes gives detailed specificity in forming leadership judgements in observations based on evidence and uniform standards

Louisiana Department of Education

- **LDOE Compass Model** for principal’s mixes domains for performance evaluation with student results (half each)
- The matrix model for performance evaluation has a simple 3 Domains: School Vision, School Culture, and Instruction with components graded either ineffective, effective: emerging, effective: proficient, highly effective
 - Two evaluations are given by state-evaluators
 - Has fewer categories on its evaluation matrix, simpler categories than other states using the matrix model
 - State-level critique only (no teacher- or district-level components)
- Student performance aspect is divided into student learning targets and value-added measures
 - SLT’s are goals set for student performance by principals: the SLT form prompts for open-ended, qualitative goal-setting
 - Principal’s own evaluation of student growth benchmarks (principal’s form their target)
 - Graded level of attainment out of 4 points (Insufficient, Partial, Full, Exceptional)
Value-added makes up 35% of student performance. Louisiana’s value-added model is different than the SAS model:
- Student data is observed longitudinally, with a data set of Louisiana students from that year
- Takes into account prior testing variables as well as variables for absences, suspensions, emotional stability, and disabilities
- The scores received for principals/schools are converted to a 1-4 scale and are graded by composite percentile
- The LDOE is acknowledged by New Leaders alongside other states as exemplary matrix-style models. Compared to Ohio, Louisiana simplifies their qualitative matrix elements to fewer, simpler domains and grades and have a more streamlined quantitative aspect

Maryland State Public Schools
- MSPS balances with a separate state and local evaluation models
- Both state and local models have an even 50/50 split between professional practice and student growth
- State-Level
 - 12 Outcomes make up the 50% split (2-10% allocation for each): the 8 elements of Maryland Instructional Leadership Framework and the 4 of the elements of the Interstate School Leaders and Licensure Consortium
 - Student Learning Objective Measures
 - Much of the principal’s quantitative student growth is based on different SLO measures
 - SLO’s are goals set by principals and evaluators towards performance on state and other assessments
 - SLO measures include a mix of state and national assessments
- Local-Level
 - 8+ Outcomes make up the 50%: the 8 elements of Maryland Instructional Leadership Framework and additional domains based on local priorities
 - For Elementary and Middle Schools 20% is Maryland State Assessment and 30% is made up of Maryland Local Education Agency objective measures of student growth
 - For High School, the entire student growth measure is made up of LEA measures
 - LEA measures are like state SLO goals but they allow for approved local-specific goals
 - Both SLO’s and LEA’s must include in Statewide assessments
- The model differs from statewide matrix models in its differentiation between state and local considerations
• It breaks down each relevant metric into a percentage to make-up the entire score out of 100
• Allows for states to pick-and-choose their own growth measures: prohibiting uniformity but emphasizing approved specification

Delaware Department of Education and the “Data Trump”

• Delaware has 5 components in principal evaluation: vision and goals, culture of learning, management, professional responsibilities, and student improvement
 o First four components are graded unsatisfactory, satisfactory, and exceeds
• Fifth Component: Student improvement is the key part of the “Data Trump” Model: the component is made up of a mix of scaled test scores (Part A) and growth goals (Part B)
 o Part A (50/100%) is scaled based on Delaware Comprehensive Assessments (DCAS)
 ▪ Scaling is improvement with the basis of previous semester’s DCAS score, subject and grade-level, SWW & ELL designations of similar students
 o Part B (0/50%) is based upon meeting state-recommended growth measures chosen and agreed upon by the principal and his/her evaluator
 o One-in-three principals choose Part A to be exclusively considered; two-in-three choose half of each part A and B
• The “data trump”: first four components can’t be considered as highly effective without proper benchmarks in the student improvement (fifth component)
• Student Model Evaluations like Delaware’s strike a balance
 o Data-heavy: Student improvement is a necessary aspect of receiving an exemplary review
 o Balanced with leadership qualities (not an overwhelming percentage taken up by test data)

Florida’s Hillsborough Country Public Schools

• HCPS has a unique split, and its leadership measures are a mix of different elements
• The total qualitative “rubric” evaluation is done by both teachers and district-evaluators, with each being mixed into a 45% measure (20%/25%)
 o Fulfilling the “360-degree” approach
 o 5 Elements of the Rubric Evaluation: Achievement Focus and Results Orientation, Instructional Expertise, Managing and Developing People, Culture & Relationship Building, Problem Solving & Strategy Change Management
Performance comprises 40%: 30% School Value-Added score and 10% Value-Added for Level 1 and 2 students in Math and English assessment (FCAT test results)
- Value-Added from University of Wisconsin-Madison Value-Added Research Center
 - Value-added analysis is done by comparing predictive test results with actual test results (like other ANCOVA value-added analyses)
 - Independent variables are former test scores (like EVAAS Projection Model)
- 30% value added uses all students state-assessment results
- 10% uses level 1 and 2 students reading and math results exclusively

Final 15% is somewhat unique: School operations have small percentage points for internal accounts & property maintenance and a separate human resources rubric
- Simple, single percentage gains and losses for exemplary school operation and errors

Hillsborough County has been commended on the variety and content of its evaluation system
- Critics of principal evaluation models emphasize a mix of district-level and teacher-level evaluation of principal performance (internal and external)
- HCPS makes a concerted effort to allow every metric to fit into a component of the final score’s percentage

Georgia's Gwinnett County Public Schools
- GCPS has been lauded on its principal evaluation system and overall evaluation system
- Early adopters of student achievement-heavy principal evaluation, GCPS has seen increased test scores and decreased African-American- and Hispanic-performance gap
- 70% Student Achievement, 12% Initiatives to Improves Student Achievement, 8% Customer Satisfaction, 10% School Management
- Student Achievement has a mix of weighted components (High School)
 - The student achievement of GCPS diverges from other growth-heavy performance measures
 - Growth measures include score gains in Georgia state tests and gains for black and Hispanic students
 - Participation and achievement in AP and CogAT tests
 - SAT scores and graduation rates
 - Not only is student achievement weighted heavier, it includes straightforward, non-value-added measures of performance
 - Similar assessment heavy data for middle and elementary school
• Initiatives to Improve Student Achievement
 o Academic Knowledge and Skills/Continuous Quality Improvement, Benchmarking and Data-Driven Decision Making, Local School Plans for Improvement, Staff Development, Quality-Plus Teaching Strategies and Student Advisement, Technology
 o Area superintendents grade 0, 1 or 2 on each’s effectiveness on given rubric

• Customer Satisfaction: Parent and Staff Perceptions graded by evaluators (0 to 4 each)

• School Management: Data Quality, Financial Audit, Cleanliness and Maintenance, Staffing, Physical Asset Inventory graded by evaluators (0 to 4 each)

• GCPS superintendent made a strong effort to maximize quantitative measures (student achievement/customer satisfaction) and minimize qualitative subjective measures

• GCPS is a more simplistic and results-driven model and has seen growth over the past decades
 o Part of the Wallace Foundation Principal Pipeline